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DEFINITIONS 
 
 
1.  A SOLID is whatever has length, width, and depth. 
 
 
 
2.  You have a STRAIGHT LINE PERPENDICULAR TO A 
PLANE if it is perpendicular to all the straight lines it stands 
on in that plane. 
 For example, PR stands on AB, and is perpendicular 
to it.  And if PR is perpendicular to all such lines in the plane 
passing through R, then PR is perpendicular to the plane. 
 
 
 

3.  You have PERPENDICULAR PLANES if every straight 
line in one of them that is perpendicular to their intersection 
is also perpendicular to the other plane. 
 For example, let two planes intersect along SX.  If 
every straight line AB drawn perpendicular to SX in one of 
the planes is also perpendicular to the other plane, then the 
two planes are perpendicular to each other. 
 

 
4.  Consider a straight line AB that passes through some plane 
at point A, and is not perpendicular to the plane, but leans over 
somewhat.  How much does it lean?  If we choose any point B 
along it, and BP falls perpendicular to the plane, then the 
INCLINATION OF THE STRAIGHT LINE TO THE PLANE 
is angle BAP. 
 
 
 

5.  The INCLINATION OF A PLANE TO A PLANE is the 
angle between two straight lines, one drawn in each plane, 
and both drawn perpendicular to the line of intersection and 
from the same point on it. 
 For example, angle ABC is formed by two 
perpendiculars to SX, each of them drawn in one of the two 
planes.  So angle ABC is the inclination of the planes. 
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6.  PARALLEL PLANES are those which never meet, no matter how far they are 
extended. 
 

 
7.  A PLANAR SOLID ANGLE is formed by three or more 
planes meeting at a point. 
 For example, in a cube, one angle of it is formed by three 
right-angled faces, namely BAC, BAD, CAD. 
 
 
 

8.  A SOLID FIGURE is a figure contained by one or more surfaces. 
 

 
9.  A SPHERE is a solid figure contained by one surface which is at all 
points equidistant from one point within called the CENTER.  If a 
semicircle is rotated all the way around on its diameter once, the solid 
figure it describes is a sphere.  The center and diameter of the 
semicircle are also the center and diameter of the sphere.  Any straight 
line drawn through the center of a sphere and stopping at the surface of 
the sphere in each direction is a DIAMETER of the sphere. 

 
 
10.  A RIGHT CONE is a solid figure described by rotating a right 
triangle all the way around once about one of the sides forming the 
right angle.  The side about which the triangle was rotated is called 
the AXIS of the cone, and the circle described by the other side of 
the right angle is the BASE of the cone.  The point at which the 
axis meets the hypotenuse of the original triangle is the VERTEX 
of the cone. 
 Note:  this kind of cone is called a right cone because its 
axis is at right angles to its base.  There are other kinds of cones 
called oblique cones, but since these will not come up in this book, 
the simple term cone will always refer to a right cone. 
 

 
11.  A RIGHT CYLINDER is a solid figure described by rotating a 
rectangle all the way around once about one of its sides.  The side about 
which the rectangle was rotated is called the AXIS of the cylinder, and 
the two circles described by the two sides of the rectangle adjacent to 
the axis are the BASES of the cylinder. 
 Note:  this kind of cylinder is called a right cylinder because its 
axis is at right angles to its bases.  There are other kinds of cylinders 
called oblique cylinders, but since these will not come up in this book, 
the simple term cylinder will always refer to a right cylinder. 
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12.  SIMILAR CONES or SIMILAR CYLINDERS are those in which the axes and the 
diameters of the bases are proportional. 
 
 
13.  A POLYHEDRON is a solid figure contained by four or more rectilineal plane 
figures.  Note:  the plural for polyhedron is often written polyhedra.  I prefer to say 
polyhedrons. 
 
 
14.  SIMILAR POLYHEDRONS are those whose faces are similar, each to each, and 
similarly arranged. 

By “similarly arranged” I mean that if any two faces in one solid meet each 
other, then the two correspondingly similar faces in the other solid also meet each other, 
forming an edge; also, if a solid angle in one solid is convex, then the corresponding 
solid angle in the other solid is also convex, but if concave, then concave. 

SIMILAR AND EQUAL POLYHEDRONS are similar polyhedrons whose 
corresponding faces are equal in size.  These can also be called congruent polyhedrons. 
 
 
 
 
15.  A PYRAMID is a polyhedron contained by a plane and three or more 
triangles drawn down to it from one point.  The portion of the plane bounding 
the pyramid is called its BASE, whereas the point is called its VERTEX. 
 
 
 
 
16.  A PRISM is a polyhedron contained by two congruent and parallel 
polygons similarly oriented, and all the parallelograms joining their 
corresponding sides.  The two identical and parallel polygons are the BASES 
of the prism. 
 
 
 
 
17.  A PARALLELEPIPED is a prism whose bases are parallelograms. 
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BASIC PRINCIPLES OF SOLID GEOMETRY 
 
 
 
 
 

1. If any two points of a straight line lie in a plane, the whole straight 
 line lies in that plane. 

 
 
 

2. If two planes intersect, their intersection is a straight line, and they 
 have no other points in common. 

 
 
 
 

3. Any plane can be extended as far as we please in any of its 
directions. 

 
 
 
 

4. Any plane can be rotated about any straight line that lies within it. 
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THEOREMS 
 
 
 
 
 
THEOREM 1:  Any three points not lying in a straight line lie only in one plane, 
and every triangle lies only in one plane. 
 
Consider any three points  A, B, C  which do not lie 
in one straight line.  It is impossible for all three of 
these points to lie in more than one plane. 
 
If possible, suppose A, B, C all lie in two distinct 
planes:  plane Q and also plane Z. 
 
Now, since A and B both lie in plane Q, therefore straight line AB lies in plane Q (Princ. 
1).  And since A and B both lie in plane Z, therefore straight line AB lies in plane Z 
(Princ. 1).  Therefore plane Q and plane Z have line AB in common, i.e. they intersect 
along that straight line.  But then they have no other points in common, beyond those 
lying in a straight line with AB (Princ. 2).  Therefore point C, not lying in line with AB 
(given), is not common to planes Q and Z.  And thus it is not possible for A, B, C to lie 
all in plane Q, and also all in plane Z. 
 
 Again, the whole triangle ABC lies only in one plane.  For any plane containing 
all of triangle ABC must also contain its three vertices A, B, and C.  But we have just 
showed that there is only one such plane.  Therefore the whole of any triangle lies only in 
one plane. 
 
Q.E.D. 
 
 
THEOREM 1 Remarks: 
 
1.  One point can have many straight lines passing through it, but any two points lie only 
in one straight line.  Similarly, two points can have many planes passing through them, 
but any three points (if they are not in a straight line) lie only in one plane. 
 It is obvious that any two points can in fact have a straight line passing through 
them.  Is it also obvious that any three points can have a plane passing through them?  
Yes.  Say the points are  A, B, C.  Join AB, and pass any plane through AB.  Now rotate 
the plane around AB like a hinge until it hits C, and the result is a plane containing points 
A, B, and C. 
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 So any three points do lie in one plane.  But a fourth point might not lie in the 
same plane. 
2.  Obviously, if you have 3 points in a straight line, there is an infinity of planes that 
contain those 3 points.  Pass any plane through the straight line containing the 3 points, 
and this plane will contain all 3 points. 
 
3.  If it were not obvious enough by itself, it is now obvious that One and only one plane 
can be drawn through a given straight line and a given point not on that straight line.  
For example, only one plane goes through straight line AB and point C – otherwise, more 
than one plane would contain the three points A, B, C. 
 
4.  If it were not obvious enough by itself, it is now obvious that One and only one plane 
can be drawn through a given pair of intersecting straight lines.  For example, only one 
plane goes through the straight lines AB and BC – otherwise, more than one plane would 
contain the three points A, B, C. 
 
 
THEOREM 2:  One and only one plane passes through any pair of parallel 
straight lines, and any straight line joining any two points on the parallels also lies in 
that plane. 
 
Given:  AB and CD, a pair of parallel straight lines, 
with P and R being random points on each of them. 
 
Prove:  One and only one plane passes through both 
AB and CD, and PR lies in that plane. 
 
Put a pencil down on the table, and imagine it indicating a straight line going on forever 
in both directions, say North and South.  Now hold a pen over the pencil, but pointing 
East and West.  These two straight lines will never intersect each other, and yet we do not 
call them “parallel.”  Why?  Because they are not in the same plane.  It is especially 
interesting that even in the same plane two straight lines can be so oriented that they will 
never meet – there is in fact only one orientation you can give a straight line to make it 
parallel to another.  And thus “parallel” means not only “never meeting,” but also “in one 
plane.”  Therefore the first part of the theorem, namely that any two straight lines that are 
parallel must lie in the same plane, is really self-evident.  It is part of what “parallel” 
means. 
 It is also clear that the parallels AB and CD lie only in one plane – it is not 
possible for more than one plane to contain them both.  For supposing it were so, then 
two distinct planes would contain points A, B, C, even though these do not lie in a 
straight line with each other, which is impossible (Thm.1).  Thus it is impossible for more 
than one plane to contain a given pair of parallel straight lines. 
 And since points P and R both lie in the plane containing the parallels AB and 
CD, therefore the line PR lies in that plane, too (Princ. 1). 
 
Q.E.D. 
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THEOREM 2 Remarks: 
 
A pair of lines that never meet, but are not in the same plane as each other, are called 
skew lines. 
 
 
 
 
 
 
THEOREM 3:  If a straight line is perpendicular to two intersecting straight lines 
at the point where they meet, then it is perpendicular to the plane in which they lie. 
 
Suppose AB and CD meet each other at M, 
and PM is perpendicular to both AB and CD.  
Then I say PM is perpendicular to the plane 
passing through AB and CD. 
 
Cut off  MA  =  MD  =  MB  =  MC. 
Join AD, BC, AP, DP, BP, CP. 
In the plane of AB and CD, draw GMH 
through M at random, cutting AD and BC. 
Join GP, HP. 
 
I say that PM is at right angles to the line GMH drawn through M randomly in the plane. 
 
[1] Since ∠AMD and ∠BMC are vertical and are contained by equal lines, hence 
rMAD ≅ rMBC, so ∠MAD = ∠MBC. 
 
[2] Now ∠MAG = ∠MBH  (being the same as ∠MAD and ∠MBC) 
 but ∠AMG = ∠BMH  (being vertical) 
 and AM = MB   (we made them so) 
 so rMAG ≅ rMBH  (Angle Side Angle) 
 
[3] Again PA = PB   (rMAP ≅ rMBP by S-A-S) 
 and PD = PC   (rMDP ≅ rMCP by S-A-S) 
 and AD = BC   (rMAD ≅ rMBC;  Step 1) 
 so rPAD ≅ rPBC  (Side Side Side) 
 so ∠PAD = ∠PBC 
 
[4] Again ∠PAG = ∠PBC  (being the same as ∠PAD and ∠PBC) 
 and PA = PB   (rMAP ≅ rMBP) 
 and AG = BH   (rMAG ≅ rMBH;  Step 2) 
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 so rPAG ≅ rPBH  (Side Angle Side) 
 
[5] Now PG = PH   (rPAG ≅ rPBH;  Step 4) 
 and MG = MH   (rMAG ≅ rMBH;  Step 2) 
 and PM is common  (to rPMG and rPMH) 
 so rPMG ≅ rPMH  (Side Side Side) 
 so ∠PMG = ∠PMH 
But these equal angles are adjacent.  Hence PM is at right angles to GMH. 
 
[6] Since PM is thus at right angles to any straight line drawn through M in the plane 
of AB and CD, therefore PM is perpendicular to that plane. 
 
Q.E.D. 
 
 
 
 
THEOREM 3 Remarks: 
 
1.  If GH is drawn through M so that it does not cut AD and BC, then it will cut AC and 
DB, and we use them for the proof instead. 
 
2.  A kind of converse to this Theorem is:  All perpendiculars to one point on a straight 
line lie in one plane.  All the perpendiculars to PM drawn from M lie in the plane of AB 
and CD. 
 
3.  Prove that the line drawn perpendicular to a plane from a point above it is the shortest 
straight line that can be drawn from that point to the plane. 
 
4.  Prove that only one straight line can be drawn from a given point perpendicular to a 
given plane. 
 
 
 
 
 
THEOREM 4:  If one of two parallels is perpendicular to a plane, so is the other. 
 
Given:  AB is parallel to CD, and AB is perpendicular 
to plane X. 
 
Prove:  CD is also perpendicular to plane X. 
 
Join BD. 
Draw DE (in plane X) perpendicular to BD, and cut 
off DE equal to AB. 
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Join BE, AE, AD. 
 
[1] Now, rABD ≅ rEDB  (SAS) 
 
[2] Thus AD = BE   (see Step 1) 
 but DE = AB   (we made them equal) 
 and AE is common   (to rABE and rEDA 
 so rABE ≅ rEDA  (SSS) 
 
 
[3] Now ∠ABE = ∠EDA  (by Step 2) 
 but ∠ABE is right   (since AB is given perpendicular to plane X) 
 so ∠EDA is right 
 
[4] So ED is perpendicular to DA 
 but ED is perpendicular to DB (by construction) 
 so ED is perpendicular to the plane through DA and DB (Thm.3), i.e. the 
plane containing points A, B, D. 
 
[5] Now, there is only one plane containing points A, B, D (Thm.1), but the plane 
containing parallels AB and CD (Thm.2) contains points A, B, D, and therefore the plane 
containing points A, B, D is the same as the plane containing parallels AB and CD.  Thus 
ED is perpendicular to the plane of the parallels, i.e. to the plane containing triangle 
BDC.  Therefore ∠EDC is a right angle (see Def.2). 
 
[6] So CD is perpendicular to DE (Step 5) 
 and CD is perpendicular to BD (∠ABD is right, and CD is parallel to AB) 
 so CD is perpendicular to two straight lines intersecting in plane X, and thus 
CD is perpendicular to plane X (Thm.3). 
 
Q.E.D. 
 
 
 
THEOREM 5:  If two straight lines are perpendicular to the same plane, they are 
parallel. 
 
Given: AB is perpendicular to plane X. 
 CD is perpendicular to plane X. 
 
Prove: AB is parallel to CD. 
 
Suppose, if possible, that AB is not parallel to CD.  
Then since B, D, C are all in one plane, draw BE in 
this plane parallel to CD.  Therefore BE is 
perpendicular to plane X (Thm.4). 
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 Now, A, B, E are all in one plane.  Let the intersection of their plane with plane X 
be called GK. 
 Since BE is perpendicular to plane X, therefore ∠GBE is right. 
 Since AB is perpendicular to plane X, therefore ∠GBA is right. 
 Thus  ∠GBE = ∠GBA,  i.e the whole is equal to the part, which is impossible. 
Thus our initial assumption was impossible – AB in fact is parallel to CD. 
 
Q.E.D. 
 
 
 
 
THEOREM 5 Remarks: 
 
From this it is clear that You can't have two straight lines perpendicular to the same point 
on a plane (except, of course, on opposite sides of the plane, i.e. one above it and one 
below it). 
 
 
 
THEOREM 6:  How to drop a straight line perpendicular to a plane from a given 
point above it. 
 
Suppose P is the point above our plane X.  Choose any 
straight line RM in plane X.  Thus P, R, M are in one 
and only one plane – drop PL perpendicular to RM in 
that new plane (as we learned to do in Ch. 1). 

Now draw LA perpendicular to RLM in plane 
X.  Thus P, L, A are in one and only one plane.  Drop 
PT perpendicular to LA in that new plane. 

 
I say that PT is perpendicular to plane X. 

 
 In plane X, draw BTE parallel to RLM. 
 
 Now RLM is perpendicular to plane PLT, since it is perpendicular to both PL and 
LT by construction (Thm.3).  Thus BTE, parallel to RLM, is also perpendicular to plane 
PLT (Thm.4). 
 Thus BT is perpendicular to all lines through T in plane PLT (Def.2). 
 So BT is perpendicular to PT. 
 But LT is perpendicular to PT, by construction. 
 So PT is perpendicular to BT and LT, which both lie in plane X. 
 Therefore PT is perpendicular to plane X  (Thm.3). 
 
Q.E.F. 
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THEOREM 7:  How to set up a straight line perpendicular to a plane from a 
given point on it. 
 
 
Given: Point P in plane X. 
Make: A straight line perpendicular to plane X at P. 
 
Choose any point R at random above plane X, and drop RL 
perpendicular to plane X (Thm.6). 
 In the plane of  R, L, P  draw PT parallel to RL. 
 
Now RL is perpendicular to plane X (by construction) 
and PT is parallel to RL   (by construction) 
so PT is perpendicular to plane X (Thm.4) 
 
 
Q.E.F. 
 
 
 
THEOREM 8:  Any plane containing a straight line perpendicular to another 
plane is itself perpendicular to that plane. 
 

 
Given: AB is perpendicular to plane X, 
 EHKG is a containing through AB 
 
Prove: Plane EHKG is perpendicular to plane X. 
 
 
 

Choose any random point R on GK, the intersection of plane EHKG and plane X. 
Draw RC perpendicular to GK in plane EHKG. 
We already know that AB is also perpendicular to GK, since AB is perpendicular to all 
straight lines through B in plane X. 
 
Since AB is perpendicular to plane X (given) 
and RC is parallel to AB   (RC and AB, in one plane, are ⊥ to GK) 
thus RC is perpendicular to plane X (Thm.4) 
  
For the same reasons, any straight line (in plane EHKG) drawn perpendicular to GK will 
be perpendicular to plane X.  Therefore plane EHKG is perpendicular to plane X (Def. 3). 
 
Q.E.D. 
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THEOREM 8 Remarks: 
 
From this it is clear how to Drop a plane perpendicular to a 
given plane from a given straight line above the given plane, 
and how to Set up a plane perpendicular to a given plane 
upon a given straight line in the given plane. 
 Given a plane and a straight line in it, to set up a 
plane on that line perpendicular to the given plane:  (1)  pick 
any 2 points R and Z on the given line,  (2)  set up ZT and RP 
perpendicular to the given plane (Thm.7),  (3)  since ZT and 
RP are perpendicular to the same plane, therefore they are 
parallel (Thm.5), and thus are in one and only one plane 
together (Thm.2),  (4)  since the plane containing them passes 
through lines that are at right angles to the given plane, 
therefore their plane is at right angles to the given plane 
(Thm.8). 
 Given a plane and a straight line above it, to construct the plane which contains 
that line and is perpendicular to the base plane:  (1)  pick any 2 points L and N on the 
given line,  (2)  drop LS and NV perpendicular to the given plane (Thm.6).  The rest of 
the proof is the same as above. 
 
 
 
 
THEOREM 9:  If three straight lines are not all in one plane, and yet one of them 
is parallel to the other two, then the other two are also parallel to each other. 
 
 
Given:  AB, CD, EF are three lines not all 
in one plane. 
 AB is parallel to EF. 
 CD is parallel to EF. 
 
Prove: AB is parallel to CD. 
 
 
[1] Choose R at random on EF. 
 Draw RG perpendicular to EF in the plane of parallels AB and EF. 
 Draw RK perpendicular to EF in the plane of parallels CD and EF. 
 
[2] Now  R, G, K  are all in one plane  (Thm.1). 
 And since ER is perpendicular to both KR and RG in the plane of  R, G, K, 
 therefore ER is perpendicular to the plane of KRG  (Thm.3). 
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[3] Now AG is parallel to ER    (given) 
 and ER is perpendicular to plane  K, R, G  (Step 2) 
 so AG is perpendicular to plane  K, R, G (Thm.4) 
 
[4] But CK is parallel to ER    (given) 
 and ER is perpendicular to plane  K, R, G  (Step 2) 
 so CK is perpendicular to plane  K, R, G (Thm.4) 
 
[5] Since  AG and CK  are both perpendicular to the same plane, namely the plane of 
points  K, R, G,  therefore AG and CK are parallel to each other  (Thm.5). 
 
Q.E.D. 
 
 
 
 
 
 
 
THEOREM 10:  If one straight line is perpendicular to two planes, the planes 
are parallel. 
 
 

Given: AB is perpendicular to 
plane X and to plane Z. 
 
Prove:  Plane X is parallel to 
plane Z. 
 
 

 
If possible, suppose planes X and Z are not parallel, but eventually meet each other – let 
KG be the line of their intersection.  Pick point R at random on KG. 
 Join AR. 
 Join BR. 
 
[1] Now, A and R are both in plane X, and so line AR is in plane X. 
 And B and R are both in plane Z, and so line BR is in plane Z. 
 
[2] Since BA is perpendicular to plane X  (given), therefore any straight line in plane 
X passing through A is at right angles to BA.  But AR is in plane X (Step 1), and it passes 
through point A.  Therefore AR is at right angles to BA. 
 Thus ∠BAR is right. 
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[3] Since AB is perpendicular to plane Z (given), therefore any straight line in plane 
Z passing through B is at right angles to AB.  But BR is in plane Z (Step 1), and it passes 
through point B.  Therefore BR is at right angles to AB. 
 Thus ∠ABR is right. 
 
[4] Thus ABR is a triangle two of whose angles are right angles – which is 
impossible.  Therefore our initial assumption was impossible, namely that planes X and Z 
should meet.  Therefore planes X and Z never meet – and so they are parallel. 
 
Q.E.D. 
 
 
 
 
THEOREM 11:  If two intersecting lines in one plane are parallel to two 
intersecting lines in another plane, the two planes are parallel. 
 

 
 
Given: AB and BC intersect in plane X, 
 DE and EF intersect in plane Z, 
 AB is parallel to DE, 
 BC is parallel to EF. 
 
Prove: Plane X is parallel to Plane Z 
 
 

 
[1] Drop BG perpendicular to plane Z (Thm.6). 
 In plane Z, draw GH parallel to ED, and GK parallel to EF. 
 
[2] Since BG is perpendicular to plane Z, 
 thus ∠BGH is right 
 and ∠BGK is right 
 
[3] But GH is parallel to DE  (we made it so) 
 and AB is parallel to DE  (given) 
 so AB is parallel to GH  (Thm.9) 
 
 Thus ∠ABG is right   (since ∠BGH is right; Step 1) 
 
[4] Again GK is parallel to EF  (we made it so) 
 and BC is parallel to EF  (given) 
 so BC is parallel to GK  (Thm.9) 
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 Thus ∠CBG is right   (since ∠BGK is right; Step 1) 
[5] Therefore BG is at right angles to both AB and BC (Steps 3 and 4), which are two 
lines intersecting in plane X.  Therefore BG is at right angles to plane X (Thm.3).  But 
BG is at right angles to plane Z (we dropped BG at right angles to plane Z; Step 1).  
Therefore planes X and Z have a common perpendicular, namely BG, and thus these two 
planes are parallel to each other (Thm.10). 
 
Q.E.D. 
 
 
 
 
THEOREM 12:  A pair of intersecting lines parallel to another pair of 
intersecting lines in another plane will contain the same angle (or supplementary 
angles). 
 

Given: AB and BC intersect in plane X, 
 DE and EF intersect in plane Z, 
 AB is parallel to DE, 
 BC is parallel to EF. 
 
Prove: ∠ABC = ∠DEF. 
 
Cut off AB = DE, and cut off BC = EF. 
Join AC, DF, AD, BE, CF. 

 
[1] AB and DE are parallel (given), and so they are in one plane. 
 But we have just cut off AB and DE equal to each other. 
 Therefore the lines joining their endpoints are also parallel and equal (Ch.1). 
 i.e. AD and BE are parallel and equal to each other. 
 
[2] BC and EF are parallel (given), and so they are in one plane. 
 But we have just cut off BC and EF equal to each other. 
 Therefore the lines joining their endpoints are also parallel and equal (Ch.1). 
 i.e. BE and CF are parallel and equal to each other. 
 
[3] Since AD is parallel and equal to BE (Step 1) 
 and CF is parallel and equal to BE (Step 2) 
 thus AD is parallel and equal to CF (Thm.9) 
  
And so the lines joining their endpoints are also parallel and equal (Ch.1), i.e. AC is 
parallel and equal to DF. 
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[4] Now AB = DE    (we cut them off equal) 
 and BC = EF    (we cut them off equal) 
 and AC = DF    (Step 3) 
 thus ΔABC ≅ ΔDEF   (Side-Side-Side) 
 so ∠ABC = ∠DEF 
 
Q.E.D. 
 
 
 
THEOREM 12 Remarks: 
 
If we extend FE to T, then TE is parallel to BC, too, but ∠TED will not be equal to 
∠ABC (unless ∠TED and ∠FED are both right angles).  Still, ∠TED is supplementary to 
∠DEF, and therefore also supplementary to ∠ABC. 
 
 
 
 
 
 
 
THEOREM 13:  If one plane intersects two parallel planes, the two lines of 
intersection are parallel. 
 
Given: Plane X is parallel to plane Z, each is cut 
by plane ABCD, namely at AB and CD. 
 
Prove: AB is parallel to CD. 
 
Since planes X and Z never meet in any direction, 
a line contained in one can never meet a line 
contained in the other.  Therefore AB can never 
meet CD. 
 But since AB and CD are both in the one plane ABCD (given), therefore they are 
non-meeting straight lines in the same plane, and therefore they are parallel to each other. 
 
So AB is parallel to CD. 
 
Q.E.D. 
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THEOREM 14:  Straight lines cut by parallel planes are cut in the same ratios. 
 

 
 
 
Given: AB and CD are cut by three parallel planes  
X, Y, Z, cutting them off at  A, K, B  and  C, E, D. 
 
Prove: AK : KB  =  CE : ED. 
 
 
 
 
 
 

[1] Join AD, AC, DB, GE, GK. 
 
[2] Since A and C are both in plane X, thus AC is in plane X. 
 Since A and C are both in the plane of A, C, D, thus AC is in the plane of A, C, D. 
 Therefore AC is the line of intersection of plane X and plane A, C, D. 
 
[3] Likewise EG is the intersection of plane Y and plane A, C, D. 
   GK is the intersection of plane Y and plane A, B, D. 
   DB is the intersection of plane Z and plane A, B, D. 
 
 
[4] Thus  AC is parallel to EG, being intersections of plane ACD 

with the parallel planes X and Y.  (Thm.13) 
 

 and  GK is parallel to DB, being intersections of plane ABD 
   with the parallel planes Y and Z.  (Thm.13) 
 
[5] And so, since GK is parallel to DB (Step 4) in ΔABD, thus 
   AK : KB  =  AG : GD 
 and since AC is parallel to EG (Step 4) in ΔACD, thus 
   CE : ED  =  AG : GD 
and since in these two proportions two ratios are the same as a third, it follows that they 
are the same as each other, i.e. 
   AK : KB  =  CE : ED 
 
Q.E.D. 
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THEOREM 15:  The intersection of two planes each perpendicular to a third 
plane is a straight line perpendicular to the third plane. 

 
 
 
Given: Planes A and B, both perpendicular 
to plane X, and intersecting each other along 
PN, P being in plane X. 
 
Prove: PN is perpendicular to plane X. 
 
 
 

 
[1] Since plane A is perpendicular to plane X, and CD is their intersection, therefore 
every line drawn in plane A perpendicular to CD is also perpendicular to plane X (Def. 
3).  Therefore the straight line drawn from P (in plane A), perpendicular to CD, is 
perpendicular to plane X. 
 
[2] Likewise since plane B is perpendicular to plane X, and EG is their intersection, 
therefore every line drawn in plane B perpendicular to EG is also perpendicular to plane 
X (Def. 3).  Therefore the straight line drawn from P (in plane B), perpendicular to EG, is 
perpendicular to plane X. 
 
[3] Therefore there is a perpendicular to plane X standing on point P that lies in plane 
A (Step 1), and again there is a perpendicular to plane X standing on point P that lies in 
plane B (Step 2).  But there is only one perpendicular to plane X standing on point P 
(Thm.5 Remark).  Therefore the line perpendicular to plane X, standing on point P, must 
be a line common to planes A and B.  But the only line common to them is their line of 
intersection (Princ. 2), namely NP.  Therefore the line perpendicular to plane X, standing 
on point P, is NP. 
 
So PN is perpendicular to plane X. 
 
Q.E.D. 
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THEOREM 16:  In a solid angle formed by three rectilineal angles, any two of 
those angles together are greater than the third. 
 
 
Let V be the vertex of a solid angle 
made up of the three rectilineal angles  
AVD, DVB, and AVB.  I say that any 
two of these together are greater than 
the third. 
 
[1] Drop DK perpendicular to the 
plane of AVB (Thm.6).  In plane 
AVB, draw KT perpendicular to VB.  
Join DT. 
 
 
[2] Now since DK is perpendicular to AVB, 
 thus  plane DKT is perpendicular to plane AVB  (Thm.8). 
 So  any line in plane AVB that is perpendicular to KT 
   (which is the intersection of planes DKT and AVB) 
   must be perpendicular to plane DKT  (Def.3). 
 But  VT is perpendicular to KT  (Step 1). 
 Hence  VT is perpendicular to plane DKT. 
 
[3] Since  VT is perpendicular to plane DKT  (Step 2), 
 thus  VT is perpendicular to every line through T in plane DKT  (Def.2). 
 So  VT is perpendicular to DT,  i.e.  ∠DTV is right. 
 
[4] Now since DK is perpendicular to plane AVB, hence ∠DKT is right. 
 Thus  DT  >  TK    (since DT is hypotenuse in right rDTK) 
 So cut off TQ  =  TK. 
 Now  ∠VTK = ∠VTQ    (both are right; ∠VTQ is ∠DTV) 
 and  VT is common    (to triangles VTK and VTQ) 
 so  rVTK ≅ rVTQ 
 so  ∠QVT = ∠KVT 
 
[5] Now  ∠DVT > ∠QVT    (the whole is greater than the part) 
 so  ∠DVT > ∠KVT    (∠KVT = ∠QVT, Step 4) 
 
[6] So  ∠DVB > ∠KVB    (Step 5) 
 Similarly ∠DVA > ∠KVA 
 hence  ∠DVB + ∠DVA  >  ∠KVB + ∠KVA    (adding) 
 or  ∠DVB + ∠DVA  >  ∠AVB 
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So these two given angles are greater than the third.  Since there was nothing special 
about the two angles we chose among the given three, it follows the same way that any 
two of them will be greater than the third. 
 
Q.E.D. 
 
 
 
 
THEOREM 16 Remarks: 
 
 
1.  A solid angle contained by 3 plane angles is called a trihedral angle. 
 
 
2.  What if K lands outside angle AVB?  
Then the proof is identical up to Step 4, 
where we said  ∠DVT > ∠KVT.  Now 
extend KV through ∠AVB. 
Thus ∠KVT  =  ∠NVB    (vertical) 
so ∠DVT  >  ∠NVB. 
And since  ∠DTV  is right, hence  ∠DVT  is 
acute (in rDTV), and so its supplementary 
angle, ∠DVB, is obtuse. 
Hence ∠DVB  >  ∠DVT 
so ∠DVB  >  ∠NVB   (since ∠DVT > ∠NVB above) 
and ∠DVA  >  ∠NVA    by the same reasoning.  And the remainder of the proof is the 
same as in the Theorem. 
 
 
 

3.  To illustrate why this Theorem is true, draw any 
angle XYZ on a piece of paper, and on each side of it 
draw angles VYX and ZYW which together add up to 
an angle less than angle XYZ.  Cut out rVYW, and 
fold along XY and YZ.  Do triangles VYX and ZYW 
form a solid angle with triangle XYZ?  Do they meet 
above the plane of rXYZ?  What happens if  ∠VYX + 
∠ZYW  =  ∠XYZ? 
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THEOREM 17:  Any solid angle is contained by plane angles adding up to less 
than four right angles. 
 
 
Let's start once more with a “trihedral” 
angle, an angle formed by three plane 
angles, namely 7, 8, 9, all coming up to a 
point D.  (You must imagine that point D 
is above the plane of this page.)  I say that  
7 + 8 + 9  is less than four right angles. 
 
Choose  A, B, C  at random along the legs 
of the solid angle, and join AB, BC, CA, 
thus forming solid angles again at A and at 
B and at C.  Looking at the diagram, then, you must remember that you are looking down 
like a bird at the peak of a solid pyramid – so ABC is the base of the pyramid, but angles 
1 through 9 all lie in planes that rise up toward you from that base. 
 
[1] Because A is a trihedral angle, thus 1 + 2 > ∠CAB  (Thm.16) 
 
[2] Because B is a trihedral angle, thus 3 + 4 > ∠ABC  (Thm.16) 
 
[3] Because C is a trihedral angle, thus 5 + 6 > ∠BCA  (Thm.16) 
 
[4] Adding together all these inequalities, keeping the greater things on one side, 
  1 + 2 + 3 + 4 + 5 + 6  >  ∠CAB + ∠ABC + ∠BCA 
 but ∠CAB + ∠ABC + ∠ΒCA  =  two rights  (triangle ABC) 
 so 1 + 2 + 3 + 4 + 5 + 6  >  two rights 
 
[5] Now angles 1 through 9, added together, equal all the angles in three triangles, 
and so all together they add up to three times the angle-sum of a triangle, i.e. three times 
two rights, i.e. six rights.  So 
  1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9  =  six rights 
 
[6] Thus, if we subtract more than two rights from these nine angles, less than four 
rights will remain.  But 1 + 2 + 3 + 4 + 5 + 6 is more than two rights (Step 4).  Therefore, 
when subtracted from the nine angles, less than four rights remain, i.e. 
  7 + 8 + 9  <  four rights. 
So the three plane angles forming a trihedral angle must add up to less than four right 
angles. 
 
Q.E.D. 
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THEOREM 17 Remarks: 
 
 
This Theorem is not limited to solid angles made 
of three plane angles.  Take any solid angle with 
vertex V formed out of  n  plane angles.  Pass a 
plane through the legs of the angle, forming a 
polygon base and a pyramid with vertex V.  The 
polygon base will thus have  n  sides, and if we 
pick a random point R inside it, we can divide it 
into  n  triangles. 
 Now the angle-sum of the polygon base 
equals the angles of all those  n  triangles minus 
the angles around R, i.e. minus 360°.  So the 
angles of the polygon  =  (n ×180°  –  360°). 
 Since every vertex of the polygon base is 
also the vertex of a trihedral angle in the pyramid, 
hence very angle of the polygon must be less than 
the two angles above it which form the angles at 
the foot of the pyramid.  For example,  ∠ABC  <  
∠ABV + ∠CBV  (Thm.16).  So all  2n  angles 
about the foot of the pyramid add up to more than 
the  n  angles of the polygon,  i.e. more than  (n ×180°  –  360°).  So let those angles at 
the foot of the pyramid add up to  (n ×180°  –  360°  +  Z°). 
 Now the  n  plane angles forming the solid angle at V equal the angles in the  n  
triangular faces of the pyramid minus their  2n  angles at the foot of the pyramid.  So the  
n  angles forming solid angle V add up to 
  (n ×180°)  –  (n ×180°  –  360°  +  Z°) 
or  360°  –  Z° 
So the  n  plane angles forming solid angle V add up to less than four rights. 
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THEOREM 18:  If among three angles in a plane any two are greater than the 
third, and they are made the peak angles of three isosceles triangles of the same leg-
length, then likewise for the bases of these triangles, any two together will be greater 
than the third. 

 
Given: Three isosceles triangles whose legs 
are all equal, i.e. PA = PB = PC = PD, and 
whose peak angles (1, 2, 3) are such that any 
two are greater than the third. 
 
Prove:  Any two bases of these triangles will 
be greater than the third. 
 

For example, I say that  AB + BC > CD. 
 
 
[1] Join AC. 
 
[2] Since AP = CP = DP  (given) 
 but ∠APC > ∠CPD (given) 
 thus AC > CD  (Ch.1, Thm. 16 Question 1) 
 
[3] Now AB + BC > AC (triangle ABC) 
 and AC > CD  (Step 2) 
 so AB + BC > CD 
 
Since there was nothing special about AB and BC, the same proof works just as well to 
show that BC + CD > AB, and again that AB + CD > BC.  To show that AB + CD > BC, 
just rearrange the triangles so that angles 1 and 3 are next to each other, and 2 is on the 
outside. 
 So whenever three isosceles triangles of the same leg-length are formed with three 
peak angles any two of which are greater than the third, likewise for their bases any two 
of them together will be greater than the third. Q.E.D. 
 
 
THEOREM Remarks: 
 
A quick corollary follows from this Theorem:  we can make a triangle out of lengths AB, 
BC, CD, since any two of them are greater than the third.  Thus we conclude:  When 
three isosceles triangles of the same leg-length are formed with three peak angles any 
two of which are greater than the third, then it will be possible to make a triangle out of 
the lengths of their bases.  For short, call such a triangle a “base triangle.” 
 Obviously, this Theorem is simply a matter of plane geometry, but we will need it 
for the upcoming Theorem 20, here in solid geometry, where we shall construct a solid 
angle. 
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THEOREM 19:  If the peak angles of three isosceles triangles with a common 
leg-length L add up to less than four right angles, then L is greater than the radius of the 
circle circumscribing their “base triangle.” 

 
Again, this is a matter of plane geometry, but it is 
crucial for the solid geometry in the next theorem.  Start 
with three isosceles triangles of leg-length L, with peak 
angles 1, 2, 3 adding up to less than 360°, and bases X, 
Y, Z.  Since they have the same leg length, L, if we 
place their equal sides together and give them a 
common vertex, C, the circle of center C and radius L 
will pass through the endpoints of bases X, Y, Z.  Since  
1 + 2 + 3  is less than 360°, hence the chords X, Y, Z do 
not cut off the circle’s entire circumference. 
 Now if the angles 1, 2, 3 are such that any two 
are together greater than the third, we can make a 
triangle out of X, Y, Z (Thm.18).  So suppose this 
condition is met, and make rTUV with sides equal to 
X, Y, Z.  Circumscribe a circle about rTUV (Ch.4).  
Call its center M. 
 Obviously the chords X, Y, Z together cut off 

the entire circumference of circle M.  But these same chords together cut off only a 
portion of the circumference of circle C.  Therefore circle C is greater than circle M, and 
so L (the radius of circle C) is greater than the radius of circle M. 
 
Q.E.D. 
 
 
 
 
THEOREM 19 Remarks: 
 
The proof takes it as evident that if the same chord 
length cuts off a greater portion of the circumference in 
one circle than it does in another, the other circle is 
greater than the one.  For example, if KD cuts off an arc 
in circle G corresponding to ∠KGD, and an arc in 
circle H corresponding to ∠KHD, and ∠KGD > 
∠KHD, then circle H is larger than circle G.  To see it, 
compare isosceles triangles KGD and KHD.  Since 
∠KGD is greater than ∠KHD, the base angles of 
isosceles rKGD must be less than those of rKHD, and so KG and DG must meet 
inside rKHD.  Hence the legs of rKGD are less than those of rKHD.  So GK < HK, 
which means circle G is smaller than circle H. 
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THEOREM 20:  How to make a solid angle out of three plane angles.  Thus it is 
required that they add up to less than four right angles, and that any two of them are 
greater than the third. 
 
Let our three given plane angles be 1, 2, 3.  By Theorem's 16 
and 17 we know that it is impossible to make a solid angle 
out of them unless they meet the conditions that any two of 
them are greater than the third, and they add up to less than 
four right angles.  So let them meet these conditions. 
 To make a solid angle out of them, 

 
[1]  Cut off any length PW along the 
leg of angle 1, and make three 
isosceles triangles PWX, QXY, RYZ, 
all having leg-length PW. 
 

 
[2]  Thus a triangle can be made out of their bases 
(Thm.18).  So make triangle ABC with  
 AB = WX 
 and BC = XY 
 and CA = YZ. 
 Draw a circle around triangle ABC, find 
center M, and join MA. 
 
 
[3] Draw a semicircle on PW.  Setting your compass to length MA, make a circle (not 
shown) around center W, and where it cuts the semicircle call K.  Thus WK = MA.  This 
can be done because MA is less than diameter WP (by Thm.19). 
 
[4] Join PK.  Thus ∠PKW is right (Ch.3). 
 Set up MV perpendicular to the plane of the circle (Thm.7), making MV = PK. 
 
[5] Now MV = KP  (we made it so; Step 4) 
 and MA = KW  (we made it so; Step 3) 
 and ∠VMA = ∠PKW (both are right; Step 4) 
 so rVMA ≅ rPKW (Side-Angle-Side) 
 thus VA = PW 
Likewise VC and VB are also each equal to PW, the common leg-length of our original 
isosceles triangles. 
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[6] But  AB, BC, CA  are equal to the bases of our isosceles triangles  WX, XY, YZ  
(Step 2).  So the three triangles standing on  AB, BC, CA  from point V are congruent to 
the three isosceles triangles (SSS), and hence the three peak angles forming solid angle V 
are equal to the given angles 1, 2, 3. 
 
 
Q.E.F. 
 
 
 
 
THEOREM 20 Remarks: 
 
This Theorem is the converse of Theorems 16 and 17.  In 16 and 17 we learned that any 
trihedral angle must be made of plane angles which add up to less than four rights and 
any two of which add up to more than the third one.  But we were left wondering:  are 
there more conditions required for three plane angles to be able to form a solid angle, or 
are those two conditions sufficient?  Also, we might wonder this:  the three angles must 
be less than four right angles – but do they in fact have to be less than three right angles, 
too?  Or is it enough for them to be less than four right angles?  This Theorem answers all 
those questions:  as soon as the three plane angles are such that they are less than four 
right angles (by whatever amount you like), and such that any two of them are greater 
than the third, we can make them into a solid angle.  Those conditions are not only 
necessary, but sufficient. 
 
 
 
 
 
THEOREM 21:  If a solid is contained by three pairs of parallel planes, the 
opposite faces are congruent parallelograms (i.e. the solid is a parallelepiped). 
 

 
Suppose solid AH is contained by three pairs 
of parallel planes, namely BE and CK, and 
BH and AK, and BD and GK.  I say that each 
pair of opposite faces, such as ABCD and 
EGHK, are identical parallelograms. 
 
[1] Since AB and CD are the intersections 
of plane AC with the parallel planes BE and 
CK, therefore AB is parallel to CD (Thm.13). 

 
[2] Since BC and AD are the intersections of plane AC with the parallel planes BH 
and AK, therefore BC is parallel to AD (Thm.13). 
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[3] Since AB is parallel to CD  (Step 1) 
 and BC is parallel to AD  (Step 2) 
 thus ABCD is a parallelogram. 
Likewise the remaining 5 faces are parallelograms. 
 
[4] Join AG, DH. 
 
[5] Since AD is parallel to EK  (because ADKE is a parallelogram) 
 and GH is parallel to EK  (because GHKE is a parallelogram) 
 thus AD is parallel to GH  (Thm.9) 
 
[6]  And thus A, D, G, H are all in one plane (Thm.2).  And their plane intersects the 
parallel planes BE and CK at AG and DH, and therefore AG is parallel to DH (Thm.13).  
But AD was just proved parallel to GH (Step 5), and therefore AGHD is a parallelogram. 
 
[7] So AG = DH   (opp. sides in parallelogram AGHD) 
 and AB = DC   (opp. sides in parallelogram ABCD) 
 and BG = CH   (opp. sides in parallelogram BGHC) 
 so rABG ≅ rDCH  (Side-Side-Side) 
 
[8] But  ABGE is just two of rABG, and DCHK is just two of rDCH, similarly 
arranged.  Therefore 
  ABGE ≅ DCHK. 
Likewise the other opposite parallelograms containing the solid are congruent to each 
other. 
 Therefore if a solid is contained by 3 pairs of parallel planes, then its six faces are 
three pairs of congruent parallelograms, and such a solid is called a parallelepiped. 
 
 
 
 
 
THEOREM 22:  If a parallelepiped is cut by a plane parallel to one of its pairs 
of opposite faces, the two resulting parts have to each other the same ratio as the bases 
on which they stand. 

 
Given:  Parallelepiped A + X, cut by a plane 
at PLN parallel to one pair of its opposite 
faces, thus dividing it into two 
parallelepipeds, namely A and X. 
 
Prove:  volume of A : volume of X  =  area 
of base of A : area of base of X 
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[1]  Place a solid B, identical to A, right next to it, and a solid Y, identical to X, right next 
to it.  And thus multiply solids A and X however many times you like.  Say you double 
A, and triple X. 
 
[2]  Because of the identical shape and size of solids A and B, it is clear that the base of 
the whole solid A + B is double the base of A. 
 Likewise the base of the whole solid X + Y + Z is triple the base of solid X. 
 
[3]  Now, because they lie inside the same parallels and have identical angles, if the solid 
A + B is equal in volume to the solid X + Y + Z, this can only be because they stand on 
equal bases, i.e. the base of A + B must be equal to the base of X + Y + Z. 
 But if the solid A + B is bigger than solid X + Y + Z, then A + B must stand on a 
bigger base than X + Y + Z does.  And if the solid A + B is smaller than solid X + Y + Z, 
then A + B must stand on a smaller base than X + Y + Z does. 
 
[4]  Therefore, whatever multiple we take of solid A (and therefore of its base), and 
whatever multiple we take of solid X (and therefore of its base), the multiple solids must 
compare the same way as the corresponding multiple bases. 
 
[5]  Therefore  solid A : solid B  =  base of A : base of B  (Ch.5, Def.8) 
 
Q.E.D. 
 
 
 
 
 
 
 
THEOREM 23:  Parallelepipeds standing on the same base and having the same 
height are equal (i.e. they have the same volume). 
 
Given:  Parallelepipeds AE and ME, both 
standing on base BCE and having their 
tops in the same plane. 
 
Prove:  AE and ME have the same 
volume. 
 
First, suppose solids AE and ME not only 
have their tops in the same plane, but also 
that some other pair of their faces lie in the same plane, say CG and CN lie in the same 
plane – and therefore also the parallel faces BK and BP lie in the same plane on the 
opposite side. 
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But CDA and EGK do not coincide with CLM and ENP (if they did, the two solids would 
coincide entirely). 
 
I say that solids AE and ME have the same volume. 
 
[1] For since CDGE and CLNE are both parallelograms, therefore 
  DG = LN   (each is equal to CE) 
 so DL = GN   (subtracting part LG from both sides) 
 but DC = GE   (in parallelogram CDGE) 
 and CL = EN   (in parallelogram CLNE) 
 so rDCL ≅ rGEN  (Side-Side-Side) 
 
[2] Now AD is parallel to BC  (ABCD is a parallelogram) 
 and ML is parallel to BC  (BCLM is a parallelogram) 
 so AD is parallel to ML  (Thm.9) 
 thus ADLM is a parallelogram. 
Clearly KGNP is also a parallelogram, and it is congruent to ADLM. 
And, because they are opposite faces in the parallelepipeds, 
  AC and KE are congruent parallelograms 
and  MC and PE are congruent parallelograms 
 
[3] Clearly, then, the two triangles and three parallelograms containing prism 1 are 
congruent with and arranged similarly to the two triangles and three parallelograms 
containing prism 3 (Steps 1 and 2).  And thus they can be made to coincide and therefore 
have equal volumes. 
 
[4] So prism 1  =  prism 3  (Step 3) 
 so solid 1 + 2 = solid 2 + 3 (adding solid 2 to each side) 
 i.e. solid AE is equal to solid ME. 
 
 
 

 
 
Next, suppose that solids AE and ME 
have only their tops and bottoms in the 
same planes, and the front face of ME, 
namely CRSE, does not lie in the same 
plane as CDGE, the front face of solid 
AE. 
 
AE and ME are still going to be equal 
in volume. 
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Let MRST be the top face of solid ME, in the same plane as ADGK, the top face of solid 
AE. 
 
[1] Extend RM to Z on AK, and ST to P on the extension of AK. 
 Extend LG to N. 
 Join ZB, LC, NE, and P to X, the back corner of base BCE (which, to avoid 
cluttering up the diagram, I have not drawn). 
 
[2] Now  ZLNP is a part of the top plane, and the top plane is parallel to base BCEX 
(given).  Thus 
  plane ZLNP is parallel to plane BCEX. 
 
[3] And  CLNE is a part of the face plane CDGE, which is parallel to the back plane 
BAKX (in solid AE).  But BZPX is a part of the back plane.  Thus 
  plane CLNE is parallel to plane BZPX. 
 
[4] And ZLCB is a part of the side plane MRCB, which is parallel to the opposite 
side plane TSEX (in solid ME).  But PNEX is a part of that opposite side plane.  Thus 
  plane ZLCB is parallel to plane PNEX. 
 
[5] Therefore the solid contained by planes 
  ZLNP and BCEX 
 and CLNE and BZPX 
 and ZLCB and PNEX 
 is contained by 3 pairs of parallel planes (Steps 2 – 3). 
Therefore that solid, namely ZE, is a parallelepiped (Thm.21), and it stands on base 
BCEX and under the same height as the two given solids) 
 
[6] Since solid ZE has its face CLNE in the same plane as CDGE, the face of solid 
AE, therefore  solid ZE  =  solid AE,  by the first part of this Theorem. 
 
[7] Again, since solid ZE has its face ZLCB in the same plane as BMRC, the face of 
solid ME, therefore  solid ZE  =  solid ME, by the first part of this Theorem. 
 
[8] Therefore  solid AE  =  solid ME  (each being equal to solid ZE; Steps 6 and 7). 
 
Therefore, no matter what, when two parallelepipeds have the same base and stand under 
the same height, they have the same volume. 
 
 
Q.E.D. 
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THEOREM 24:  Parallelepipeds which are of the same height and on bases of 
equal area are equal. 
 
Conceive two parallelepipeds, AV 
and TX, with the same height and 
with bases ABCD and QRST 
having the same area.  I say the 
solids have the same volume. 
 
[1] Let’s take the simplest case 
first:  let the sides of these solids 
all be perpendicular to their bases – 
thus CV and RX are perpendicular 
to the bases and CV = RX (because 
the heights are the same).  Because 
the walls of these solids are thus all 
standing at right angles to the 
bases, we can imagine the solids 
like two buildings, and just look at 
their “floor plans,” namely their 
bases ABCD and QRST. 
 
Now, to prove that AV = TX … 
 
[2] We place a solid identical to TX in line with AD, that is, letting DEGH (identical 
to base QRST) be its base, we place DE in a straight line with AD.  Complete 
parallelogram CDEW in the base plane, and build a “building” on it with the same height 
again as the solids on ABCD and DEGH. 
 
[3] Extend CD to where it meets GH extended, namely at L, and complete 
parallelogram EDLK in the base plane, and build another “building” on top of it with the 
same height once more. 
 
[4] Now, there is an undrawn rectangle standing straight up on DE (coming up at you 
out of the page) which is a wall for the building on DEKL; but it is also a wall for the 
building on DEGH.  Since there is no absolute up and down in geometry, this wall can 
also be thought of as a base of each of these two solid buildings, and both are under the 
same height, i.e. both their tops lie in the plane standing on LKHG.  Therefore they are 
equal in volume (Thm.23). 
 So The solid on DEKL  =  the solid on DEGH 
 
[5] Notice that the buildings on DEKL and CDEW together make up one big 
parallelepipedal building, since they are in line with each other.  Therefore, by Thm.22, 
 building on DEKL : building on CDEW  =  area of DEKL : area of CDEW, 
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[6] But, looking just at the parallelograms in the base plane, 
  DEKL = DEGH (both stand on DE, and are in the same parallels) 
 but DEGH = QRST (we made DEGH identical to QRST) 
 and QRST = ABCD (given) 
 so DEKL = ABCD 
 
[7] So, substituting ABCD for DEKL in the proportion from Step 5, we have: 
 
 building on DEKL : building on CDEW  =  area of ABCD : area of CDEW, 
But also by Theorem 22, we have 
 
 building on ABCD : building on CDEW  =  area of ABCD : area of CDEW 
 
Since we have two ratios the same as a third ratio, they are the same as each other, i.e. 
 
 blding on DEKL : blding on CDEW  =  blding on ABCD : blding on CDEW. 
 
Notice in this proportion the buildings on DEKL and ABCD both have the same ratio to 
the building on CDEW.  From this, it follows that they are equal.  Thus 
 
  building on DEKL  =  building on CDEW. 
 
[8] Now solid on DEKL  =  solid on ABCD (Step 7) 
 but solid on DEKL  =  solid on DEGH (Step 4) 
 so solid on ABCD  =  solid on DEGH 
 but solid on QRST  =  solid on DEGH (we made it thus in Step 2) 
 so solid on ABCD  =  solid on QRST 
 
Therefore the solid AV is equal in volume to the solid TX. 
 
 
[9] Now what if the solids on ABCD and QRST, although having their tops and 
bottoms in the same planes, yet have their walls tilted in different ways?  Will they still 
be equal?  Yes. 

 Just build the solids on 
those same bases whose walls are 
perpendicular to the bases, having 
their tops also in the same top-
plane as the “tilty” solids.  Then, 
by Theorem 23, each upright solid 
is equal to the tilty solid whose 

base it shares.  But, by the proof we just gave, the two upright solids are equal to each 
other – since they stand on equal bases and between the same parallel planes.  Therefore 
the tilty solids are equal, too. 
 
Q.E.D. 
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THEOREM 25:  Parallelepipeds of the same height are to each other as their 
bases. 
 
 
 
 
 
 
 
 
Given: Parallelepipeds 1 and 2 of the same height, standing on bases EFGK and ABCD. 
 
Prove:  Solid 1 has to solid 2 the same ratio that base EFGK has to base ABCD. 
 
[1] Extend base ABCD so that parallelogram DCPQ, while having the same angles as 
parallelogram ABCD, nonetheless has the same area as EFGK. 
 
[2] Complete the parallelepipedal solid on DCPQ by extending the planes of solid 2, 
and by capping it off with plane QXZP parallel to plane DTVC.  Thus we have solid 3, 
and solids 2 and 3 together form one big parallelepiped. 
 
[3] Now solid 3 : solid 2  =  DCPQ : ABCD  (Thm.22) 
 
[4] But solid 3  =  solid 1, 
since they stand between the same parallel planes, and have bases of equal area 
(Thm.24).  Substituting solid 1 for solid 3 in the proportion from Step 3, then, we have: 
  solid 1 : solid 2  =  DCPQ : ABCD 
 
[5] But DCPQ  =  EFGK,  by Step 1.  Substituting EFGK for DCPQ in the 
proportion, we now have 
  solid 1 : solid 2  =  EFGK : ABCD, 
which is what we sought to prove. 
 
 
 
Q.E.D. 
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THEOREM 25 Remarks: 
 

You might be wondering how we 
accomplish Step 1.  How do we extend 
the base ABCD with a parallelogram 
DCPQ that is equiangular with ABCD, 
but equal in area to EFGK? 
 Since that all takes place in the 
base plane, it is a matter of simple plane 
geometry, and Chapter 1 gives us all we 
need: 
 

[1]  Place EFGK on BC so that K is on point C. 
 
[2]  Draw LER parallel to AB and CD.  Join RC.  Extend RC and FG until they meet at 
N.  Extend DC to M.  Complete parallelogram DMNQ.  Extend BC to P. 
 
[3]  Parallelogram DCPQ is clearly equiangular with parallelogram ABCD.  But it is 
equal to parallelogram EFGC in area, 
since  DCPQ  =  ECML  (complements in parallelogram RLNQ) 
and  EFGC  =  ECML  (in the same parallels and on the same base) 
so  DCPQ  =  EFGC 
 
 
 
 
 
 
 
THEOREM 26:  Similar parallelepipedal solids are to one another in the 
triplicate ratio of their corresponding sides. 
 

 
 
Given: Similar parallelepipeds AB and CD, with 
sides AE and ED being a pair of corresponding 
sides. 
 
 
Prove: Solid AB : solid CD  is the ratio triplicate of  
AE : ED. 
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[1] Place solids AB and CD so that they have a common corner at E, and the 
corresponding sides AE and ED lie in a straight line.  Thus the corresponding sides LE 
and EK will also line up (since ∠LED = ∠KEA in the similar solids). 
 
[2] In angles HED and HEK complete parallelepiped EG. 
 In angles HED and HEL complete parallelepiped LQ. 
 
[3] Because of the similarity of the solids, AE, KE and HE are proportional to ED, 
EL, and EM.  Hence 
 AE : ED = KE : EL = HE : EM 
 
[4] Now, because parallelograms under the same height are to one another as their 
bases (Ch.6, Thm.1), it follows that: 
 AE : ED = AK : KD 
and KE : EL = KD : DL 
and HE : EM = HD : DM. 
 Because of Step 3, the first in each of these pairs of ratios are all the same ratio.  
Therefore the second in each of these pairs of ratios are also all the same, 
i.e. AK : KD = KD : DL = HD : DM. 
 
[5] But since parallelepipeds under the same height are to each other as their bases 
(Thm.25), it follows further that: 
 AK : KD = solid AB : solid EG 
and KD : DL = solid EG : solid LQ 
and HD : DM = solid LQ : solid CD 
 Because of Step 4, the first in each of these pairs of ratios are all the same ratio.  
Therefore the second in each of these pairs of ratios are also all the same, 
i.e. solid AB : solid EG = solid EG : solid LQ = solid LQ : solid CD 
 
[6] Since that proportion is continuous, and contains four terms, therefore the first has 
to the last the triplicate ratio of the first to the second, i.e. 
  solid AB : solid CD is the triplicate ratio of solid AB : solid EG. 
 
[7] But, as we saw above in Steps 5 and 4, 
  solid AB : solid EG = AK : KD = AE : ED. 
Therefore solid AB : solid CD is the triplicate ratio of AE : ED. 
 
So similar parallelepipeds have to each other the triplicate ratio of their corresponding 
sides. 
 
Q.E.D. 
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THEOREM 26 Remarks: 
 
The most important instance of this, of course, is with cubes.  All cubes are similar 
parallelepipeds, and so it follows that they are to each other in the ratio triplicate of their 
corresponding sides. 
 For example, suppose you had a pair of cubes, and the side or edge of one was 
double the side or edge of the other, i.e. their sides were in the ratio of  1 : 2.  Then what 
is the ratio of their volumes?  It will be  1 : 8, since 
 1 : 2 = 2 : 4 = 4 : 8, 
and thus 1 : 8 is the ratio triplicate of 1 : 2. 
 This Theorem should make you wonder about the ratios of other kinds of similar 
solids, such as curved ones.  Do spheres have to each other the triplicate ratio of their 
diameters? 
 
 
 
 
 
 
 
 
THEOREM 27:  If the sides of opposite faces in a parallelepiped are bisected by 
two planes, then the intersection of these two planes bisects (and is bisected by) the 
diagonal of the solid. 
 
Given:  Parallelepiped BE, with diagonal 
CH.  Planes QOPR and MKLN bisect the 
edges at Q, O, M, K, R, P, N, L.  SU is the 
intersection of these two cutting planes. 
 
Prove:  SU and CH bisect each other. 
 
 
[1] Join CU, UF. 
 
[2] It is easily seen that OULC and UPEL are parallelograms. 
 Thus OU = CL 
 and UP = LE. 
 but CL = LE  (given) 
 thus OU = UP 
 but OC = PF  (being halves of the equal sides DC and EF) 
 and ∠UOC = ∠UPF (each is equal to ∠PEL) 
 so rUOC ≅ rUPF (Side-Angle-Side) 
 thus ∠OUC = ∠PUF. 
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[3] But OUP is a straight line, and therefore CUF is also a straight line, since the 
vertical angles OUC and PUF are equal. 
 Likewise ASH is a straight line. 
 And since AC and FH are equal and parallel lines, ACFH is a parallelogram. 
 
[4] Thus SU lies in the plane of parallelogram ACFH, since it joins points U and S 
which lie on its opposite sides.  Thus CH and SU must meet, say at T. 
 
[5] Now CU = UF  (since rUOC ≅ rUPF; Step 2) 
 and AS = SH  (since similarly rSQA ≅ rSRH) 
Thus SU joins the midpoints of the opposite sides in parallelogram ACFH.  Therefore SU 
bisects the diameter of ACFH, namely CH, and also is bisected by it. 
 
Q.E.D. 
 
 
 
 
 
THEOREM 27 Remarks: 
 
 
1. If it is not perfectly clear why the line joining 
the midpoints of a parallelogram's opposite sides must 
bisect and be bisected by the diagonal, consider the 
following.  Let ACFH be a parallelogram, and let CU 
= UF, and AS = SH. 
 
Now CU = SH  being halves of the opposite sides of a parallelogram, 
and ∠HCF = ∠CHS since CF is parallel to HA 
and ∠CUS = ∠HSU since CU is parallel to SH 
so rCUT ≅ rHST (Angle-Side-Angle) 
so UT = TS 
and CT = TH  Q.E.D. 
 
2. Obviously, this Theorem is true about cubes in particular – if the sides of a cube 
are bisected by two planes, the intersection of those planes will bisect the diagonal of the 
cube, and be bisected by it. 
 
3. In parallelepipeds other than cubes, the four diagonals can be unequal to each 
other.  But that doesn't make any difference to this Theorem – take any diagonal you like, 
the proof did not require that we choose a special one. 
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THEOREM 28:  If a triangular prism lies on one of its parallelogram sides, and 
in this position has the same height as another triangular prism lying on its triangular 
base, and if the parallelogram is double the triangle, then the prisms will have the same 
volume. 
 
Imagine a prism with triangular 
bases ABM and DCN, lying on 
one of its parallelogrammic sides 
ABCD, and another prism with 
triangular bases EGK and OLP, 
lying on EGK, which has half the 
area of ABCD. 
 Now if we further suppose that ABCD and EGK lie in the same plane, and also 
that OLP and MN lie in the same plane, then I say that the prisms will have the same 
volume. 
 
[1] Complete the parallelepiped AR contained by the angles ADC, ADN, NDC. 
 Complete parallelogram EGKT, and 
 Complete the parallelepiped GZ contained by the angles GKT, GKP, PKT. 
 
[2] Since ABCD is double triangle EGK in area, and EGKT is also double triangle 
EGK in area, therefore ABCD = EGKT. 
 
[3] But that means that solids AR and GZ stand on equal bases.  And yet they also 
have the same height, since it is given that the height of the prisms is the same, and we 
made the parallelepipeds to have that same height.  Therefore AR and GZ have the same 
volume (Thm. 24). 
 
[5] Since AR and GZ are the same volume, therefore also their halves have the same 
volume.  But the triangular prisms are obviously their halves.  Therefore the two prisms 
are equal in volume, too. 
 
Q.E.D. 
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THEOREM 28 Remarks: 
 
 
We assumed in this Theorem that each prism is obviously half the volume of the 
parallelepiped of which it is a part.  Why is that obvious? 
 Consider the prism contained by triangles OLP and EGK.  It makes up a 
parallelepiped by being combined with another prism, the one contained by triangles 
OZP and ETK.  Now EGKT and OLPZ are parallelograms, and so are OZTE and all the 
other faces of the parallelepiped. 
Thus rOLP ≅ rOZP 
and rEGK ≅ rETK 
and LPKG ≅ OZTE 
and OLGE ≅ ZPKT 
and, of course, OPKE is a common face for both prisms. 

So the two prisms are contained by an equal number of congruent and similarly 
arranged faces.  Therefore they are congruent and contain equal volumes. 

Does that mean that these prisms can coincide?  Not necessarily. 
Consider your right hand and your left hand.  Even if they were perfectly 

symmetrical, and of a ghostly quality so that they could pass through each other, they 
would not be able to coincide with each other and form one self-same hand.  A right hand 
simply can't be a left hand! 

Now, can the two prism halves of a parallelepiped be like that?  Can they be 
perfect mirror images of each other, and yet not be able to coincide?  Yes.  It is almost 
impossible to represent this in a two-dimensional diagram in a clear and convincing way, 
so the best thing to do is to make a pair of such prisms.  It is best not to use paper, since 
that is too flimsy – you need something more rigid like cardstock or a manila folder.  
Transfer the diagrams below onto a piece of manila:  each consists of a square, a rhombus 
with angles of 60° and 120° (it is made of two equilateral triangles), and two isosceles 
triangles with peak angles of 105° (i.e. 60° + 45°) placed at the bottom corners of the 
square.  The legs of the isosceles triangles are equal to the sides of the square. 

After you have transferred the diagrams, cut out the two figures along the solid 
lines.  Next, with all the labeling face up on the table, fold up the triangles and square 
along all the dotted lines.  Bring together the edges marked with the same letters, such as 
“A”, and tape them together.  When you are done, you will have two triangular prisms, 
each with one open face.  If you place the square faces down on the table and turn H and 
Z toward you, you will see that the prisms are symmetrical, but, like a right hand and a 
left hand, cannot be made to coincide.  Their corresponding faces can be made to 
coincide one at a time, but not all of them simultaneously.  If you pick them up in your 
hands, and place edges X and Z together, and in that position bring together the two open 
faces of the prisms, you will be holding a parallelepiped. 

What makes the equality of these two prisms obvious, then, is not that they could 
be made to coincide.  Rather, like your two hands, it is their perfect symmetry – one is a 
perfect mirror image of the other. 
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“HOOK”:  TRIANGULAR SECTIONS OF A CUBE. 
 
If you are given a cube and a triangle  abc,  will it be possible to slice the cube with a 
plane so that there will be formed a triangular facet which is similar to  abc?  Not if  abc  
is right or obtuse.  But if  abc  is acute, it can always be done. 
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